首页> 外文OA文献 >Gaussian predictive process models for large spatial data sets
【2h】

Gaussian predictive process models for large spatial data sets

机译:大空间数据集的高斯预测过程模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With scientific data available at geocoded locations, investigators are increasingly turning to spatial process models for carrying out statistical inference. Over the last decade, hierarchical models implemented through Markov chain Monte Carlo methods have become especially popular for spatial modelling, given their flexibility and power to fit models that would be infeasible with classical methods as well as their avoidance of possibly inappropriate asymptotics. However, fitting hierarchical spatial models often involves expensive matrix decompositions whose computational complexity increases in cubic order with the number of spatial locations, rendering such models infeasible for large spatial data sets. This computational burden is exacerbated in multivariate settings with several spatially dependent response variables. It is also aggravated when data are collected at frequent time points and spatiotemporal process models are used. With regard to this challenge, our contribution is to work with what we call predictive process models for spatial and spatiotemporal data. Every spatial (or spatiotemporal) process induces a predictive process model (in fact, arbitrarily many of them). The latter models project process realizations of the former to a lower dimensional subspace, thereby reducing the computational burden. Hence, we achieve the flexibility to accommodate non-stationary, non-Gaussian, possibly multivariate, possibly spatiotemporal processes in the context of large data sets. We discuss attractive theoretical properties of these predictive processes. We also provide a computational template encompassing these diverse settings. Finally, we illustrate the approach with simulated and real data sets. Copyright (c) 2008 Royal Statistical Society.
机译:随着在经过地理编码的位置处可获得科学数据,研究人员越来越多地转向空间过程模型来进行统计推断。在过去的十年中,通过马尔可夫链蒙特卡罗方法实现的分层模型在空间建模中变得特别受欢迎,这是因为它们具有适应模型的灵活性和强大功能,而经典方法无法做到这一点,并且避免了不适当的渐近性。但是,拟合分层空间模型通常涉及昂贵的矩阵分解,其分解复杂度随着空间位置的数量而按立方顺序增加,从而使此类模型不适用于大型空间数据集。在具有几个空间相关响应变量的多变量设置中,这种计算负担会加剧。当在频繁的时间点收集数据并使用时空过程模型时,也会加剧这种情况。关于这一挑战,我们的贡献是与我们称为空间和时空数据的预测过程模型一起工作。每个空间(或时空)过程都会引入一个预测性过程模型(实际上,它们中的任意一个)。后者将前者的过程实现投影到较低维的子空间,从而减轻了计算负担。因此,我们获得了在大数据集的情况下适应非平稳,非高斯,可能是多元,可能是时空过程的灵活性。我们讨论了这些预测过程的有吸引力的理论特性。我们还提供了涵盖这些不同设置的计算模板。最后,我们用模拟和真实数据集说明了该方法。版权所有(c)2008年皇家统计学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号